A convenient synthesis of 2-amino-3-cyano-4-aryl-9,10-dihydrobenzo[*f*] chromene derivatives catalysed by KF/Al₂O₃

Xiang-shan Wang*a,b,c, Da-qing Shi^{a,c}, Xian-yong Wei^b and Zhi-min Zong^b

^aDepartment of Chemistry, Xuzhou Normal University, Xuzhou Jiangsu, 221116, China ^bSchool of Chemical Engineering, China University of Mining Technology, Xuzhou Jiangsu 221008, China ^cThe Key Laboratory of Biotechnology on Medical Plant, Jiangsu, Xuzhou 221116, China

A series of 2-amino-3-cyano-4-aryl-9,10-dihydrobenzo[*f*]chromene derivatives were synthesised from arylaldehyde, malononitrile with 7-methoxyl-1,2,3,4-tetrahydronaphthalene-2-one in ethyl alcohol at refluxing temperature catalysed by KF-Al₂O₃. The structure of the product was confirmed by X-ray analysis.

Keywords: benzo[f]chromene, arylaldehyde, malononitrile, naphthalene-2-one, synthesis

2-Aminochromene is a compound, which is found to possess antiestrogenic activity. It is devoid of any agonistic activity,¹ has been evaluated for potassium channel opening and hypotensive activies,² vasodilator and antihypertensive activies,³ β -adrenolytic activity,⁴ antimicrobial activity⁵ and biological activity as a high-affinity retinoic acid receptor antagonist.⁶ The utility of fluoride salts as potential bases in variety of synthetic reactions has been recognized in recent years. Especially potassium fluoride coated with alumina (KF-alumina) has been a versatile, solid-supported reagent used for Knoevenagel reaction,⁷ Henry reaction,⁸ Darzens reaction, ⁹ Wittig reaction,¹⁰ alkylation,¹¹ elimination⁹ and many other reactions.¹² Herein we report the synthesis of 2-amino-3-cyano-4-aryl-9,10-dihydrobenzo[*f*]chromene derivatives catalysed by KF–Al₂O₃.

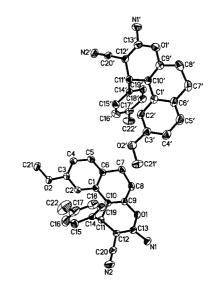
When arylaldehyde (1), malononitrile (2) and 7-methoxyl-1,2,3,4-tetrahydro-naphthalene-2-one (3) were treated with KF-Al₂O₃ in ethyl alcohol at refluxing temperature, the 2-amino-3-cyano-4-aryl-9,10-dihydrobenzo[f]chromene derivatives (4) were obtained in good yields (79–92%) (Table 1) (Scheme 1)

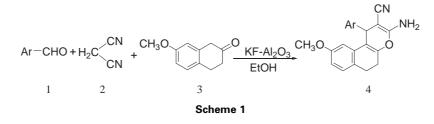
The structures of products are all identified by IR, ¹H NMR and Elemental analysis. The structure of 4g was further confirmed by X-ray analysis,¹³ and the crystal structure of 4g was shown in Fig.1 (turns molecules per unit cell).

In conclusion, we find a novel method available for the synthesis of benzo[f]chromene derivatives. Meanwhile, the new method also further expands the application of the catalyst KF–Al₂O₃ in organic synthesis. This new method has the advantages of an easy work-up, milder reaction conditions and high yields in synthesis of these potential biologically active compounds.

Experimental

Melting points were determined in open capillaries and are uncorrected. IR spectra were recorded on a TENSOR 27 spectrometer in KBr. ¹H NMR spectra were obtained for solution in CDCl₃ with Me₄Si as internal standard using an Inova-400 spectrometer. Elemental analyses were carried out using Carlo Erba 1110 analyzer. X-ray diffraction was measured on a Siemens P4 diffractometer.




Fig. 1 Structure of the compound 4g.

7-Methoxyl-1,2,3,4-tetrahydro-naphthalene-2-one was purchased from Nantong Baisheng Chemical Co. Ltd. of China. The other chemicals were of analytical reagent grade and were used directly without further purification.

General preparation of KF-alumina: To a solution of KF (58 g) in water (100 ml) was added Al_2O_3 (100 g) with stirring. The mixture was stirred for 3 h at 80 °C, then the solvent was evaporated and the solid was dried for 4 h at 120 °C to give KF-alumina.

Table 1 The synthetic data of the products

Entry	Ar	Time/h	M.p/°C	Yield/%
4a	3-NO₂C ₆ H₄	2	211–213	92
4b	4-CIC ₆ H ₄	3	175–177	82
4c	2-CIC ₆ H ₄	3	229–230	85
4d	3,4-0ČH ₂ OC ₆ H ₃	5	240–241	88
4e	4-CH ₃ OC ₆ H ₄	5	200–201	79
4f	3,4-CĬ ₂ C ₆ H ₃	2.5	230–232	86
4g	4-CH ₃ C ₆ H ₄	4	182–184	81
4ĥ	4-BrČ ₆ H _₄ [−]	3	186–187	92
4i	3,4-(CH ₃ O) ₂ C ₆ H ₃	5	175–177	83

* Correspondence. E-mail: xswang1974@yahoo.com

680 JOURNAL OF CHEMICAL RESEARCH 2004

General procedure for the synthesis of 2-Amino-3-cyano-4-aryl-9,10dihydrobenzo[f]chromene derivatives (4): A dry 50 ml flask was charged with arylaldehyde (1) (4 mmol), malononitrile (2) (4 mmol), 7-methoxyl-1,2,3,4-tetrahydro-naphthalene-2-one **3** (5 mmol), KF-alumina (250 mg) and ethyl alcohol (10 ml). The mixture was stirred at reflux temperature for 2–5 h. The mixture was poured into 200 ml water; the solid was filtered off and washed with water. The crude product was purified by recrystallisation from 95% EtOH to give **4**.

4a: 92%, m.p. 211–213 °C; ¹H NMR (CDCl₃) δ : 2.62–2.65 (m, 2H, CH₂), 2.86–2.98 (m, 2H, CH₂), 3.64 (s, 3H, OCH₃), 4.54 (s, 2H, NH₂), 4.67 (s, 1H, CH), 6.45 (s, 1H, ArH), 6.58 (d, J = 8.0 Hz, 1H, ArH), 7.02 (d, J = 8.0 Hz, 1H, ArH), 7.48–7.52 (m, 1H, ArH), 7.71 (d, J = 7.2 Hz, 1H, ArH), 8.08 (d, J = 8.4 Hz, 1H, ArH), 8.12 (s, 1H, ArH); IR (KBr, v, cm⁻¹): 3428, 3320, 2929, 2835, 2191, 1692, 1641, 1590, 1524, 1415, 1231, 1153, 1037, 853, 814, 720cm⁻¹. Anal.calcd for C₂₁H₁₇N₃O₄: C 67.19, H 4.56, N 11.19; found C 66.98, H 4.71, N 11.02.

4b: 82%, m.p. 175–177 °C; ¹H NMR (CDCl₃) & 2.58–2.63 (m, 2H, CH₂), 2.85–2.94 (m, 2H, CH₂), 3.64 (s, 3H, OCH₃), 4.45 (s, 2H, NH₂), 4.50 (s, 1H, CH), 6.48 (s, 1H, ArH), 6.57 (d, J = 8.0 Hz, 1H, ArH), 7.01 (d, J = 8.0 Hz, 1H, ArH), 7.23(s, 4H, ArH); IR (KBr, v, cm⁻¹): 3405, 3296, 2937, 2886, 2827, 2184, 1692, 1641, 1598, 1575, 1497, 1407, 1230, 1196, 1153, 1087, 1037, 1005, 861, 763cm⁻¹. Anal.calcd for C₂₁H₁₇ClN₂O₂: C 69.14, H 4.70, N 7.68; found C 69.03, H 4.62, N 7.77.

4c: 85%, m.p. 229–230 °C; ¹H NMR (CDCl₃) δ: 2.52–2.64 (m, 2H, CH₂), 2.84–2.95 (m, 2H, CH₂), 3.64 (s, 3H, OCH₃), 4.45 (s, 2H, NH₂), 5.22 (s, 1H, CH), 6.57 (s, 1H, ArH), 6.58 (d, J = 6.4 Hz, 1H, ArH), 6.97 (d, J = 8.4 Hz, 1H, ArH), 7.10–7.19 (m, 2H, ArH), 7.27 (d, J = 7.6 Hz, 1H, ArH), 7.36 (d, J = 7.6 Hz, 1H, ArH); IR (KBr, v, cm⁻¹): 3448, 3331, 2936, 2886, 2835, 2191, 1699, 1641, 1606, 1582, 1497, 1399, 1239, 1153, 1056, 873, 814, 763cm⁻¹. Anal.calcd for C₂₁H₁₇ClN₂O₂: C 69.14, H 4.70, N 7.68; found C 69.09, H 4.82, N 7.53.

4d: 88%, m.p. 240–241 °C; ¹H NMR (CDCl₃) δ : 2.55–2.62 (m, 2H, CH₂), 2.87–2.92 (m, 2H, CH₂), 3.65 (s, 3H, OCH₃), 4.40 (s, 2H, NH₂), 4.44 (s, 1H, CH), 5.90(d, *J* = 8.8Hz, 2H, OCH₂O), 6.57 (s, 1H, ArH), 6.58 (d, *J* = 6.4 Hz, 1H, ArH), 6.73(d, *J* = 6.4 Hz, 1H, ArH), 6.74(s, 1H, ArH), 6.83 (d, *J* = 7.6 Hz, 1H, ArH), 6.99 (d, *J* = 7.6 Hz, 1H, ArH); IR (KBr, v, cm⁻¹): 3413, 3304, 2937, 2878, 2184, 1680, 1649, 1591, 1497, 1415, 1231, 1037, 931, 845, 814, 763cm⁻¹. Anal.calcd for C₂₂H₁₈N₂O₄: C 70.58, H 4.85, N 7.48; found C 70.62, H 4.93, N 7.26.

4e: 79%, m.p. 200–201 °C; ¹H NMR (CDCl₃) & 2.55–2.59 (m, 2H, CH₂), 2.87–2.94 (m, 2H, CH₂), 3.63 (s, 3H, OCH₃), 3.75 (s, 3H, OCH₃), 4.39 (s, 2H, NH₂), 4.48 (s, 1H, CH), 6.55 (s, 1H, ArH), 6.56 (d, J = 8.0 Hz, 1H, ArH), 6.82 (d, J = 8.4 Hz, 2H, ArH), 6.98 (d, J = 7.2 Hz, 1H, ArH), 7.22 (d, J = 8.4 Hz, 2H, ArH), IR (KBr, v, cm⁻¹): 3397, 3304, 3202, 3936, 2828, 2200, 1680, 1641, 1598, 1505, 1415, 1254, 1172, 1021, 845, 814, 771cm⁻¹. Anal.calcd for C₂₂H₂₀N₂O₃: C 73.32, H 5.59, N 7.77; found_C 73.12, H 5.64, N 7.59.

4f: 86%, m.p. 230–232 °C, ¹H NMR (CDCl₃) & 2.51–2.63 (m, 2H, CH₂), 2.83–2.94 (m, 2H, CH₂), 3.67 (s, 3H, OCH₃), 4.48 (s, 2H, NH₂), 5.17 (s, 1H, CH), 6.52 (s, 1H, ArH), 6.59 (d, J = 7.6 Hz, 1H, ArH), 6.98 (d, J = 7.6 Hz, 1H, ArH), 7.15 (d, J = 8.0 Hz, 1H, ArH), 7.21 (d, J = 8.0 Hz, 1H, ArH), 7.38(s, 1H, ArH); IR (KBr, v, cm⁻¹): 3456, 3331, 2929, 2828, 2191, 1692, 1641, 1591, 1407, 1231, 1056, 873, 837, 771 cm⁻¹, Anal.calcd for C₂₁H₁₆Cl₂N₂O₂: C 63.17, H 4.04, N 7.02; found C 63.34, H 4.21, N 6.95.

4g: 81%, m.p. 182–184°C, ¹H NMR (CDCl₃) & 2.28 (s, 3H, CH₃), 2.56–2.63 (m, 2H, CH₂), 2.85–2.96 (m, 2H, CH₂), 3.62 (s, 3H, OCH₃), 4.39 (s, 2H, NH₂), 4.48 (s, 1H, CH), 6.55 (s, 2H, ArH), 6.98 (d, J = 7.2 Hz, 1H, ArH), 7.09 (d, J = 7.2 Hz, 2H, ArH), 7.19 (d, J = 7.2 Hz, 2H, ArH); IR (KBr, v, cm⁻¹): 3413, 3331, 2936, 2827, 2191, 1699, 1651, 1606, 1575, 1497, 1407, 1282, 1239, 1153, 1056, 997, 880, 837, 763 cm⁻¹. Anal.calcd for C₂₂H₂₀N₂O₂: C 76.72, H 5.85, N 8.13; found C 76.60, H 6.03, N 7.87

4h: 92%, m.p. 186–187°C, ¹H NMR (CDCl₃) δ : 2.55–2.60 (m, 2H, CH₂), 2.87–2.92 (m, 2H, CH₂), 3.63 (s, 3H, OCH₃), 4.45 (s, 2H, NH₂), 4.48 (s, 1H, CH), 6.46 (s, 1H, ArH), 6.57 (d, J = 8.0 Hz, 1H, ArH), 6.99 (d, J = 7.2 Hz, 1H, ArH), 7.17–7.19(m, 2H, ArH), 7.39–7.42(m, 2H, ArH); IR (KBr, v, cm⁻¹): 3409, 3303, 2937, 2827, 2191, 1680, 1641, 1598, 1575, 1497, 1407, 1239, 1204, 1145, 1056, 1013, 873, 837, 814cm⁻¹. Anal.calcd for C₂₁H₁₇BrN₂O₂: C 61.63, H 4.19, N 6.84; found C 61.43, H 4.32, N 6.77.

4i: 83%, m.p. 175–177°C, ¹H NMR (CDCl₃) &: 2.56–2.60 (m, 2H, CH₂), 2.84–2.95 (m, 2H, CH₂), 3.63 (s, 3H, OCH₃), 3.82 (s, 3H, OCH₃), 3.84 (s, 3H, OCH₃), 4.40 (s, 2H, NH₂), 4.46 (s, 1H, CH), 6.56 (s, 1H, ArH), 6.58 (s 1H, ArH), 6.78 (d, J = 8.0 Hz, 1H, ArH), 6.81–6.85(m, 2H, ArH), 6.99(d, J = 8.0 Hz, 1H, ArH); IR (KBr, v, cm⁻¹): 3413, 3304, 2937, 2878, 2184, 1680, 1649, 1591, 1497, 1415, 1231, 1037, 932, 845, 815, 764 cm⁻¹. Anal.calcd for C₂₃H₂₂N₂O₄: C 70.75, H 5.68, N 7.17; found C 70.59, H 5.71, N 7.08.

We are grateful to the Foundation (No. QL98001) of the "Surpassing Project" of Jiangsu Province and Natural Science Foundation (No. 04KJB150139) of the Education Committee of Jiangsu Province for financial support.

Received 6 April 2004; accepted 26 July 2004 Paper 04/2451

References

- 1 K. Hajela and R.S. Kapil, Euro. J. Med. Chem. 1997, 32, 135.
- (a) H. Horino, T. Mimura, K. Kagechika, M. Ohta, H. Kubo and M. Kitagawa, *Chem. Pharmaceut. Bull.*, 1998, **46**, 602; (b) R. Mannhold, G. Cruciani, H. Weber, H. Lemoine, A. Derix, C. Weichel and M. Clementi, *J. Med. Chem.*, 1999, **42**, 981; (c) M.J. Chen, Y.M. Lee, J.R. Sheu, C.T. Hu and M.H. Yen, *J. Pharm. Pharmacol.*, 1998, **50**, 83; (d) G.C. Rovnyak, S.Z. Ahmed, A.J. Baird, C.Z. Ding, S. Dzwonczyk, F.N. Ferrata and W.G. Humphreys, *J. Med. Chem.* 1997, **40**, 24.
- 3 H.B. Sun, W.Y. Hu, L. Chen, S.X. Peng, T. Wang and G.Q. Liu, Gaodeng Xuexiao Huaxue Xuebao, 1997, 18, 730.
- 4 J. Kossakowski, Z.T. Jerzy and S. Suski, Acta Polo. Pharmaceut., 1998, 55, 77.
- 5 H.M. El-Shaaer, P. Foltinova, M. Lacova, J. Chovancova and H. Stankovicova, *Farmaco*, 1998, **53**, 224.
- 6 A.T. Johnson, L. Wang, A.M. Standeven, M. Escobar and R.A.S. Chandraratna, *Bioorg. Medi. Chem.*, 1999, **7**, 1321.
- 7 Y. Gao, D.Q. Shi, L.H. Zhou and G.Y. Dai, *Chin. J. Org. Chem.*, 1996, **16**, 548.
- 8 J.M. Melot, F.M. Boullet and A. Foucaud, *Tetrahedron Lett.*, 1986, 27, 493.
- 9 J. Yamawaki, T. Kawate, T. Ando and T. Hanafusa, Bull. Chem. Soc. Jpn., 1983, 56, 1885.
- 10 F.M. Boullet, D. Villemin, M. Ricard, A. Moison and A. Foucaud, *Tetrahedron* 1985, 41, 1259.
- (a) J. Yamawaki and T. Ando, *Chem. Lett.* 1985, (5), 533; (b)
 J. Yamawaki, T. Ando and T. Hanafusa, *Chem. Lett.*, 1981, 8 1143;
 (c) D. Villemin, *J. Chem. Soc., Chem. Commun.* 1985, 13, 870.
- (a) X.S. Wang, D.Q.Shi and S.J. Tu, *Chin. J. Org. Chem.*, 2002,
 22, 909; (b) X.S. Wang, D.Q. Shi and S.J. Tu, *Synth. Commun.*,
 2003, 33, 119; (c) X.S. Wang, D.Q. Shi and S.J. Tu, *Chin. J. Org. Chem.*, 2003, 23, 210; (d) X.S. Wang, D.Q. Shi and S.J. Tu, *Chin. J. Chem.* 2003, 21, 1114; (e) X.S. Wang, D.Q. Shi, H.Z. Yu,
 G. F. Wang and S.J. Tu, *Synth. Commun.* 2004, 34, 509.
- 13 X-ray crystallography for 4g: A single crystal 4g with dimensions of 0.56 mm λ 0.42 mm λ 0.42 mm was mounted on a Siemens P4 diffractometer. The data were collected at the temperature of 296(2) K with graphite monochromated Mo $K\alpha$ ($\lambda = 0.71073$ Å) radiation, using the ω scan technique. 6289 independent reflections were collected, of which 3775 reflections with $I > 2\sigma(I)$ were considered to be observed. The structure was solved by direct method using SHELXTL program and expanded using Fourier technique. The non-hydrogen atoms were refined anisotropically, the hydrogen atoms were positioned geometrically and refined as riding [C-H = 0.93–0.98Å, N–H = 0.86 Å and $U_{iso}(H) = 1.2U_{eq}(C)$]. A full-matrix least-squares refinement gave final R = 0.0376 and wR = 0.0843 with We style= $V_{0}^{-2}(F_{0}^{-2}) + (0.0485P)^{2} + 0.2685P$, where $P = (F_{0}^{-2} + 2F_{c}^{-2})/3$. Empirical formula $C_{22}H_{20}N_{2}O_{2}$, $F_{W} = 344.40$, T = 296(2) K, Triclinic, space group P–1, a = 10.120(1) Å, b = 13.127(1) Å, c = 15.203(2) Å, $\alpha = 67.841(9)^{\circ}$, $\beta = 80.81(1)^{\circ}$, $\gamma = 77.58(1)^{\circ}$, V = 1819.7(4) Å³, Z = 4, Dc = 1.257 Mg/m³, $\lambda(MoK\alpha) = 0.71073$ Å, $\mu = 0.081 \text{ mm}^{-1}$, F(000) = 728. 1.45°< θ <25.00, S = 0.859, Largest